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This paper introduces a separation protocol relying on affinity chromatography that exhibits unprecedented
selectivities. We submit the mixture contained in the separative medium to the simultaneous action of two
symmetrically modulated excitations. The first is a uniform periodic field (e.g., electric field) with zero mean
value, whereas the second is the periodic modulation of a thermodynamic parameter such as the temperature.
Under appropriate tuning of the modulations with the dynamics of the discriminating chemical reaction, we
predict a symmetry breaking of molecular motion: the mixture components that are addressed by their rate
constants exhibit an oriented motion for a particular phase relation between the modulations of the field and
the thermodynamic parameter. The resulting velocity of the mixture components depends on the rate constants
and on a conjugated thermodynamic value such as the standard enthalpy of the discrimination process in the
case of a temperature modulation. In particular, it may be possible to separate mixture components with
identical rate constants. We use the present approach to design a protocol to sort nucleic acids by their sequence.

1. Introduction

Mixtures often result from syntheses, or extractions of natural
products: most chemists face separations. To devise ingenious
tools as well as to find optimal conditions to achieve separation
lie at the heart of the analytical and preparative activity.1

Essential is here to maximize selectivity2 by identifying an
appropriate discrimination process (for instance: a chemical
reaction, the formation of a complex, the adsorption on a surface,
...). When dealing with mixtures of similar components such
as members of a series, it may become difficult to find a process
to selectively sort only one component. Then one is left to reveal
at the most the differences existing among the mixture com-
ponents with regards to the retained discrimination process.

Most separations are performed under quasistatic condi-
tions: at any time, the system obeys the conditions of local
and partial equilibrium with regards to the discriminative
process.3 Selectivity relies here on thermodynamics. For in-
stance, the velocity of the mixture components in a chroma-
tography column generally depends on the association constant
for the stationary phase. As an alternative, we recently proposed
to explicitly use the kinetics of the discrimination process in
already well-tried separation techniques.4-8 Emphasis on kinetic
properties was obtained by periodically driving the separation
medium away from equilibrium.9-11 Application of a uniform
time-periodic field with null average value maximizes the
effective diffusion coefficient of a field-sensitive reactant when
specific relations between its rate constants and the field
properties are fulfilled.4-6 Selective increase of the effective
diffusion coefficient much beyond the intrinsic contribution12

led us to introduce a novel chromatography protocol relying

on enhanced diffusion.4 In particular, we achieved to selectively
sort from a mixture a dye that was addressed by its rate constants
for association withR-cyclodextrin.8 In principle, the expected
advantage of basing a separation on kinetics is similar to
working in a regime of kinetic control instead of a regime of
thermodynamic control in preparative chemistry:13,14 time
becomes a relevant parameter to improve selectivity.

The present paper introduces a strategy that still further
improves separation selectivity. We superimpose to the preced-
ing field oscillation the modulation of a thermodynamically
relevant parameter such as the temperature, the pressure or a
reactant activity. Under appropriate tuning of the rate constants
with the field frequency, we now get a symmetry breaking:
field-sensitive reactants exhibit an oriented motion for a given
phase relation between the modulations of the field and of the
thermodynamic parameter. The corresponding behavior is
reminiscent to the topic of Brownian motors.15 In the context
of separations, the behavior of a mixture component is governed
by two different relaxations to the exerted perturbations and
the larger selectivity here originates from the combination of
two independent component-specific contributions to the overall
response.

The paper is organized as follows. In the next section, we
present the reaction-diffusion model. We first explain how we
derive an analytic expression of the velocity of species with
given kinetic properties in the presence of electric field and
temperature oscillations. The choice of maximization conditions
of this velocity is then discussed. Finally, the results are applied
to sort nucleic acids by their sequence. The last section contains
conclusion.

2. The Model

We consider a one-dimensional (1D) reaction-diffusion
system submitted to a uniform, time-periodic electric field. The
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field-sensitive speciesC is supposed to react with a targetP,
producingQ, according to the reaction

that is common in Chemistry and Biology (formation of host-
guest or ligand-receptor complexes, pairing between single
stranded-DNA, ...). The rate constantsk1 andk2 are respectively
associated with the forward and backward reaction. The
equilibrium constant of reaction 1 is given byK ) k1/k2. In the
following, we assume that the solution ofC, P, andQ is ideal.

Adopting a macroscopic description, the concentrations of
speciesC andQ submitted to reaction 1, respectively denoted
by C(x, t) and Q(x, t), obey the following partial differential
equations

wheret is time andx is the spatial coordinate of the 1D-medium
considered. In the right-hand side of eq 2, the two first terms
originate from the chemical reaction 1. The third term is
associated with diffusion,DC andDQ are the diffusion coefficient
of speciesC andQ, respectively. The fourth term is related to
the oscillating electric field whereµC and µQ are the electro-
phoretic mobilities of speciesC andQ. We chose

with pulsationω and phaseφ. In the following, we admit that
speciesC andQ experience differently the action of the electric
field, either because they bear a different charge or because their
size is different. We consequently consider that the mobility
difference∆µ ) µC - µQ does not vanish. We also suppose
that speciesP has a constant uniform concentration thanks to
appropriate exchanges with the exterior16,17 or simply because
P is in great excess. Then eqs 2 and 3 become linear and we
introduceκ1 ) k1P as an effective rate constant for the forward
reaction 1.

In addition to the field oscillations, we impose a periodic
modulation of small amplitude of temperatureT. We choose a
sinusoidal excitation with pulsationω′ and phaseψ and write

Adopting the Eyring model18 for the rate constants,ki ) kBT/h
exp(-∆iG†0/RT), we obtain

wherekB is the Boltzmann constant,R is the individual gas
constant,h is the Planck constant,∆iG†0 is the standard Gibbs
free energy of activation atT0 with i ) 1 for the forward reaction
and i ) 2 for the backward reaction.∆iS†0, ∆iH†0 are the
corresponding quantities for entropy and enthalpy. Taking∆iS†0

and ∆iH†0 constant in the relevant range, we expand the

expression of the rate constant at first order in the perturbation.
It reads

whereki
0 ) riexp(-εi) with ri ) kBT0/h exp(∆iS†0/R) andεi )

∆iH†0/RT0.

3. Oriented Motion

Initially, a given amountN of the mixture of speciesC and
Q at chemical equilibrium and at temperatureT0 is introduced
at a given point of the medium, chosen as the origin. The initial
condition reads

whereδ(x) is the Dirac distribution andK 0 ) K0P with K0 )
k1

0/k2
0. The 1D-medium is supposed to be infinite and the

boundary conditions obey∂C/∂x ) ∂Q/∂x ) 0 for x f (∞.
We defineI(t) as the total amount of speciesC in the medium

at time t

Conservation of matter has been used to deduce the total amount
of speciesQ from I(t). Integrating eq 2 overx from -∞ to +∞
and solving the differential equation obtained forI(t), we find,
at first order inâ

with

where∆ε ) ε1 - ε2 is the dimensionless enthalpy∆rH0/RT0 of
reaction 1, andτø ) 1/(κ1

0 + k2
0) is the relaxation time of

reaction 1. The angleψ′ obeys

The integralI(t) is identical to the total amount inC that is
obtained in a homogeneous mixture ofC, Q, and P during
relaxation experiments, that are used to measure the rate
constants of reaction 1;19 neither inhomogeneity of solute

P + C y\z
k1

k2
Q (1)

∂C(x, t)
∂t

) -k1PC(x, t) + k2Q(x, t) + DC

∂
2C(x, t)

∂x2
-

µCE(t)
∂C(x, t)

∂x
(2)

∂Q(x, t)
∂t

) k1PC(x, t) - k2Q(x, t) + DQ

∂
2Q(x, t)

∂x2
-

µQE(t)
∂Q(x, t)

∂x
(3)

E(t) ) a cos(ωt + φ) (4)

T ) T0[1 + â cos(ω′t + ψ)] with â , 1 (5)

ki )
kBT

h
exp(∆iS

†0

R ) exp(-
∆iH

†0

RT ) (6)

ki ) ki
0[1 + (∆iH

†0

RT0
+ 1)â cos(ω′t + ψ)] (7)

C(x, t ) 0) ) 1

1 + K 0
Nδ(x) (8)

Q(x, t ) 0) ) K 0

1 + K 0
Nδ(x) (9)

I(t) ) ∫-∞

+∞
C(x, t) dx (10)

N - I(t) ) ∫-∞

+∞
Q(x, t) dx (11)

I(t) ) N

1 + K0
+

Nδimax

x1 + (ω′τø)
2[sin(ψ + ψ′)exp(- t

τø
) -

sin(ω′t + ψ + ψ′)] (12)

δimax) K 0â∆ε

(1 + K 0)2
(13)

sin(ψ′) ) 1

x1 + (ω′τø)
2

(14)

cos(ψ′) )
ω′τø

x1 + (ω′τø)
2

(15)
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distribution, nor field modulation alter the consequences of the
periodic temperature modulation. The first term in the right-
hand side of eq 12 is the equilibrium value of theC amount at
T0. The second term is the product of an amplitudeδI ) Nδimax/
[1 + (ω′τø)2]1/2 by a function that evaluates the time-dependence
of the system response to the temperature modulation: after a
transient regime limited by the relaxation time of reaction 1,
one enters into the forced regime with a sinusoidal response.
At low enough field frequency (ω′τø , 1), many exchanges
between the reactants and the products take place in average
before any significant change of the temperature occurs: the
system composition has enough time to relax to its instantaneous
equilibrium value. The amplitude of the response is maximal
and equal toδImax ) Nδimax that can be easily derived from the
van’t Hoff equation (δ ln K 0 ) â∆ε) with I ) N/1 + K 0. The
temperature perturbation and the system response are in phase.
An attenuation and a phase delay become significant in the
system response aroundω′τø ≈ 1. Eventually, no chemical
exchange takes place in average at high enough field frequency
(ω′τø . 1): the system does not respond anymore to the
temperature modulation.

We are here mainly interested in the mean position of the
total amount of speciesC andQ. In other words, our aim is to
determine the mean value of the positionx, considered as a
random variable distributed according to (C(x, t) + Q(x, t))

Multiplying eqs 2 and 3 byx and summing the two equations,
we deduce the following differential equation for the mean
position 〈x〉

Using the expressions of the fieldE(t) and the integralI(t)
respectively given in eqs 4 and 12, the mean position〈x〉 can
be written as the sum of three components

The first line of the right-hand side of eq 18 is an oscillating
term at pulsationω. It is associated to the motion of the
equilibrium populations inC andQ. Their respective relative
proportions,pC

0 ) 1/1 + K 0 andpQ
0 ) K0/1 + K 0, move in

phase with the electric field at the respective velocitiesaµC and
aµQ. The integral in the second line leads to transient terms
that are negligible beyond the relaxation time of reaction 1. If
the pulsationsω andω′ associated with the field and temperature
oscillations are different, the integral in the third line leads to
oscillating terms at pulsations (ω + ω′) and (ω′ - ω). These
terms that oscillate at frequencies that differ from the excitation
frequenciesω andω′ could be used to measure the rate constants
of the reaction 1 by sensitive methods relying on synchronous
detection. In the present context, the most interesting behavior

is observed forω ) ω′. Beyondτø, the mean position〈x〉 obeys

when we omit the oscillating terms, i.e., fort multiple of the
periodT ) 2π/ω. Under these conditions, the mean position of
the total amount of speciesC andQ, that is, the average position
of the concentration profile (C(x, t) + Q(x, t)), moves at a
constant velocityV that we write

when use is made of eq 13 forδimax and eq 14 forψ′.
Expression (19) of the position is appropriate to get some

physical insight into the phenomenon. The second term of the
right-hand side,δimax/[1 + (ωτø)2]1/2 ) δI/N, is equal to the
normalized amplitude of the modulation of the population of
C, that is induced by the modulation of the temperature at
pulsationω (vide supra). It differs from zero only if∆ε * 0.
The distance covered by the amountδI during half a period is
not necessarily retraced back during the following half period
if ∆µ * 0. The resulting velocity correspondingly depends on
δI/N, on the difference between the individual velocities of the
C andQ states,a∆µ, but also on the phase relation (ψ + ψ′ -
φ) between the system response to the temperature modulation,
and the field periodic excitation. One has to notice that the
physical origin of the present phenomenon differs from the cause
of the dispersion that originates from application of a modulated
field only.4,6,8 In particular, velocity is acquired at any value of
the field amplitudea, whereas a regime of strong field was
required to observe the dispersion.

The superposition of an oscillating field and a temperature
modulation at the same pulsation leads to an oriented motion
for the reactant (C, Q) provided that (i) the two exchanging
statesC andQ experience differently the field, i.e., for∆µ *
0, and (ii) the reaction 1 is not athermal, i.e.,∆ε * 0.20 The
corresponding symmetry breaking is remarkable if one considers
that all of the excitations exerted on the system are uniform
and symmetrical. Indeed in the presence of a modulated field,
we only observed an isotropic effect: an increase in the apparent
diffusion coefficient.4,6,8 Oriented motion here originates from
the double periodic excitations with a constant phase relation.

4. Optimization of Velocity in a Purpose of Separation

We first discuss the optimization conditions of the velocity
of a given chemical species in view of its separation from a
mixture. In standard separation techniques, a mixture component
C is discriminated by a few independent quantities. For instance,
only one is relevant in standard electrophoresis: its mobilityµ.
If C presents some affinity for the separative medium leading
to the formation of a bound stateQ, a thermodynamic quantity
such as an association constant,K0, should be additionally taken
into consideration. In our previous work,4,6,8 we introduced a
protocol that improves the separation selectivity by making
kinetics significant to control molecular sorting. Effective
diffusion of the components (C, Q) has been shown to depend
on three quantities:∆µ, k1

0, andk2
0, instead of two. The present

result brings some further improvement since the expression
of the velocity given in eq 20 now depends on four quantities:
∆µ, ∆ε, k1

0, andk2
0. Thus, a separation relying on a difference

〈x〉 ) 1
N∫-∞

+∞
x(C(x, t) + Q(x, t)) dx (16)

∂〈x〉
∂t

) -E(t)(∆µ
I(t)
N

+ µQ) (17)

〈x〉 ) -
a(µC + K 0µQ)

(1 + K 0)ω
[sin(ωt + φ) - sin(φ)] -

a∆µδimax

x1 + (ω′τø)
2[∫0

t
cos(ωt + φ) sin(ψ + ψ′) exp(- t

τø
) dt -

∫0

t
cos(ωt + φ) sin(ω′t + ψ + ψ′) dt] (18)

〈x〉 ) 1
2
a∆µ

δimax

x1 + (ωτø)
2

sin(ψ + ψ′ - φ) × t (19)

V )
〈x〉
t

) a∆µâ∆εK 0

2(1 + K 0)2{ωτø sin(ψ - φ) + cos(ψ - φ)

[1 + (ωτø)
2] }

(20)
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of velocity should be highly selective. Difficulty arises from
the dependence of the variables. Whereas the mathematical
expression ofV depends on∆ε, k1

0, and k2
0, the physically

relevant quantities arer1, r2, ε1, andε2. The values of the control
parameters,P, ω, and (ψ - φ), that optimize separation, are
therefore not obviously chosen.

We consider a mixture of many similar couples (C, Q)
differing only by the values of the set (r1, r2, ε1, ε2) that
characterize the kinetics of exchange between stateC and state
Q at temperatureT0 in the presence of speciesP in excess. In
particular,∆µ is assumed to be the same for all the couples. If
this is not the case, one can always perform a first standard
electrophoresis to separate the mixture components into families
characterized by given values of∆µ.

We first evaluate the significance of the phase difference (ψ
- φ) in relation with the selectivity issue. Figure 1 shows
representative cuts of the hypersurfaceV(r1, r2, ε1, ε2) at fixed
activation energies (ε1, ε2), i.e., at fixed ∆ε. Under these
conditions, switching from the preexponential factors (r1, r2)
to (κ1

0, k2
0) consists of a simple change of variables. As shown

in Figure 1c, the range of (κ1
0, k2

0) values whereV differs from
zero is at the smallest when (ψ - φ) is close toπ/2 moduloπ.
In contrast, nonvanishing values of the velocity are obtained
over a larger (κ1

0, k2
0) range for other values of (ψ - φ)

according to Figure 1a,b,d. For a separation purpose, the
achievement of a narrow peak is crucial since it determines the
selectivity of the procedure, i.e., the ability to separate couples
(C, Q) with close properties. In the following, we therefore
always choose the phase difference

so that the expression of velocity reduces to

Note that eq 22 is symmetric by exchange ofκ1
0 andk2

0 if ∆ε

is fixed.
We now consider the question of the extraction of a reference

couple (CR, QR) with predefinite values of the set (r1
R, r2

R, ε1
R,

ε2
R) and consequently with predefinite rate constantsk1

0,R, k2
0,R

and energy difference∆εR.
We first address this issue by looking for appropriate values

for P andω that singularize at the most (CR, QR) within the (C,
Q) mixture components: we searchPR and ωR such that the
(CR, QR) velocity is at the largest. The four independent physical
quantities: r1, r2, ε1, and ε2 do not appear as independent
variables in the mathematical expression ofV given in eq 22.
When looking for the extrema ofV(r1, r2, ε1, ε2), we find two
sets of conditions

According to eq 23, a local maximum is reached in cuts of the
phase space at fixed (ε1, ε2) for

Following eq 24 and provided that|∆εR| > 1, a local maximum
in cuts at fixed (r1, r2) is found for

The condition|∆εR| > 1 here makes precise how the thermo-
dynamic constantK of the reaction has to be sensitive to
temperature to maximize the (CR, QR) velocity: the difference
of dimensionless activation energy between the forward and
backward reactions has to be larger than 1.

The two sets of conditions given in eqs 25 and 26 are
compatible only if|∆εR| . 1.21 In this case, they are degenerate
and reduce to eq 25 that only depends on (k1

0,R, k2
0,R) and not on

all the (r1
R, r2

R, ε1
R, ε2

R) parameters. Thus, the choice of (PR,
ωR) values maximize the velocity of a family of (C, Q) species
characterized by (k1

0,R, k2
0,R). Nevertheless the maximized ve-

locities associated with each member of this (C, Q) family
depend on∆ε

SinceVmax explicitly depends on∆ε, it is possible to separate
(C, Q) species sharing identical rate constants (κ1

0,R, k2
0,R)

obeying eq 25 but with a different value of∆ε. Table 1 displays
the dependence ofVmax that is observed for mixture components
of a (κ1

0,R, k2
0,R) family that differ in their activation enthalpy

and activation entropy by ln10 at most inRTunits. The different
parameter values were taken in relation with the DNA example
that is illustrated in the following.22 The nine examined members
have in common the same association constantK0,R, as well as
the same (k1

0,R, k2
0,R) set. Consequently, no separation method

Figure 1. Scaled velocity 2V/aâ∆µ of the mean position of the total
amount of speciesC andQ as a function of the rate constantsκ1

0 and
k2

0 in decimal logarithmic units for different phase differences between
temperature and phase oscillations: (a)ψ - φ ) 0, (b) ψ - φ ) π/4,
(c) ψ - φ ) π/2, (d)ψ - φ ) 3π/4. The preexponential factorsr1 and
r2 are variable, the other parameters are fixed atε1 ) 8, ε2 ) 60, ω )
2 s-1 andP ) 10-6 M.

ψ - φ ) π/2 (21)

V )
a∆µâ∆εκ1

0k2
0ω

2(κ1
0 + k2

0)[(κ1
0 + k2

0)2 + ω2]
(22)

∂V/∂r1 ) ∂V/∂r2 ) 0 S κ1
0 ) k2

0 ) ω/2 (23)

∂V/∂ε1 ) ∂V/∂ε2 ) 0 S κ1
0 + k2

0 ) ∆ε(k2
0 - κ1

0) ) ω (24)

PR ) 1

K0,R
, ωR ) 2κ1

0,R ) 2k2
0,R (25)

PR ) 1

K0,R

∆ε
R - 1

∆ε
R + 1

, ωR ) 2κ1
0,R ∆ε

R

∆ε
R - 1

) 2k2
0,R ∆ε

R

∆ε
R + 1

(26)

Vmax ) a∆µâ∆ε

16
(27)
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such as a classical affinity chromatography relying onK0, nor
the diffusive separation in the presence of a modulated field
that depends on (k1

0, k2
0)4,6,8 should achieve the separation of

the mixture components. In contrast, the present approach
discriminates among the nine considered components five
subfamilies associated to the five possible∆ε values. Noticeably
the reference component characterized by (r1

R, r2
R, ε1

R, ε2
R)

exhibits an intermediate velocity together with two other
components. Three components move respectively more slowly
and more quickly than (CR, QR). Their velocities differ from
Vmax

R by 4.5% and 8.9% respectively.
In principle, components with rate constants that do not obey

eq 25 may interfere with the preceding (C, Q) family: a large
value of ∆ε could compensate the decrease ofV due to
nonoptimized values of (κ1

0, k2
0). As seen in Figure 2 and Table

2, couples (C, Q) with one rate constant equal tok1
0,R or k2

0,R

will be the most limiting species. The main result is that the

compensation would have to be envisaged only if some mixture
components exhibit∆ε much larger than∆εR. More precisely,
a couple withk1

0 ) k1
0,R and k2 ) 0.1k2

0,R has a velocity 3.6
times smaller thanVmax

R if ∆ε ) ∆εR. Similarly, a component
with k1

0 ) k1
0,R, k2 ) 0.1k2

0,R and∆ε ) 3.6∆εR travels with the
same velocity as the reference component.

The present protocol exhibits a high selectivity to perform
separations: four independent parameters∆µ, ∆ε, k1

0, andk2
0

characterize the motion of every reactant. In a mixture, one
correspondingly anticipates an unprecedented dispersion of the
velocities among the components. At the same time, the latter
dispersion is not accompanied by a facilitated recovery of a
desired species: it is difficult to singularize a given (CR, QR)
component by an extremal behavior. The excitation by an
electric field at constant temperature led to maximize the
apparent diffusion coefficient of a given (CR, QR) couple, with
predefinite rate constants (κ1

0,R, k2
0,R), by tuningP andω. In the

case of the superposition of field and temperature oscillations,
a given (CR, QR) couple exhibits a maximized velocity with
respect to variablesκ1

0 andk2
0, that still increases with∆ε. In

addition, couples with rate constants different from (κ1
0,R, k2

0,R)
but with a large∆ε may travel at the same velocity as the desired
couple. In a context of molecular sorting from unknown
mixtures, successive separations relying on increasingly selective
protocols should be favored: after a first separation to select
mixture components with identical∆µ, the separation protocol
relying on field modulation only could be applied to sort with
the (κ1

0,R, k2
0,R) criterium. The present protocol could be ulti-

mately used to further refine the dispersion based on∆ε, k1
0

andk2
0.

5. Application to the Detection of Single Nucleotide
Polymorphism

The preceding considerations are not restrictive when one is
interested in sorting components that exhibit the largest values
of ∆ε. This makes the present protocol especially suited to
analyze and to sort deoxyribonucleic acids. We now discuss
the application of the separation method to the detection of
single nucleotide polymorphism. In reference to the model
presented previously, speciesC should be the variable single-
stranded DNA to be probed,P an oligonucleotide probe with a
complementary sequence to the portion ofC to be analyzed,
andQ the resulting double-stranded DNA. For shortP oligo-
nucleotide probes (typically 10 bases long), the forward rate
constantk1

0 is poorly sensitive to wrongly paired bases: it is
expected to vary by less than a factor 10 upon variation in the
C sequence.23-25 In contrast, a single mismatch of bases already
leads to a variation of the backward rate constantk2

0 that can
reach up to 3 orders of magnitude.23-25 In relation to the
activation energy, the hybridation is easy whereas the separation
of two strands requires crossing over a high energy barrier: the
activation energy difference∆ε between the forward and the
backward reaction 1 is typically much larger than one. In
addition,∆ε is at the largest for the perfect match pair denoted
(CR, QR). Under these conditions, the local maximization
conditions given in eqs 23 and 24 are identical. In the following,
the pulsationωR of the oscillations and the concentration ofPR

are chosen such that the rate constantsk1
0,R and k2

0,R of the
perfectly matching strandCR obey eq 25.

To check the sensitivity of the method, we consider the
reference strandCR and other single strandsC with rate constants
k1

0 and k2
0 that differ from k1

0,R and k2
0,R by only 1 order of

magnitude. In a context of micromutation detection, such

TABLE 1: Scaled Velocity -2W/a∆µâ of DNA Strands
Obeying Reaction 1 with Identical Rate Constantsk1

0,R and
k2

0,R, but with the Terms ri and exp(-Ei) Differing by 1
Order of Magnitude at Most from Those of the Referencea

r1, ε1, r2, ε2 ∆ε -2V/a∆µâ

r1
R, ε1

R, r2
R, ε2

R ∆εR 6.50
r1

R/10,ε1
R - ln(10), r2

R/10,ε2
R - ln(10) ∆εR 6.50

10r1
R, ε1

R + ln(10), 10r2
R, ε2

R + ln(10) ∆εR 6.50
r1

R, ε1
R, 10r2

R, ε2
R + ln(10) ∆εR - ln(10) 6.79

r1
R/10,ε1

R - ln(10), r2
R, ε2

R ∆εR - ln(10) 6.79
10r1

R, ε1
R + ln(10), r2

R, ε2
R ∆εR + ln(10) 6.21

r1
R, ε1

R, r2
R/10,ε2

R - ln(10) ∆εR + ln(10) 6.21
10r1

R, ε1
R + ln(10), r2

R/10,ε2
R - ln(10) ∆εR + 2ln(10) 5.92

r1
R/10,ε1

R - ln(10), 10r2
R, ε2

R + ln(10) ∆εR - 2ln(10) 7.08

a Concentration of the target and pulsation of field and temperature
oscillations are fixed atPR ) 10-6 M and ωR ) 2s-1 for a reference
couple characterized byk1

0,R ) 106 M-1 s-1, k2
0,R ) 1 s-1, ε1

R ) 8, ε2
R

) 60.

Figure 2. Decimal logarithm of scaled velocity|2V/aâ∆µ∆ε| versus
log(κ1

0) and log(k2
0) at fixed ∆ε for ψ - φ ) π/2, ω ) 2 s-1, andP

) 10-6 M.

TABLE 2: Normalized Velocity W∆ER/WR∆E of DNA Strands
Obeying Reaction 1 with Rate Constants Differing from the
Resonant Values by 1 Order of Magnitude at Mosta

k1
0, k2

0 V∆εR/VR∆ε

k1
0,R, k2

0,R 1.00
k1

0,R, 10k2
0,R or 10k1

0,R, k2
0,R 0.12

k1
0,R, 0.1k2

0,R or 0.1k1
0,R, k2

0,R 0.28
10k1

0,R, 10k2
0,R or 0.1k1

0,R, 0.1k2
0,R 0.20

k1
0,R, 10k2

0,R or 10k1
0,R, k2

0,R 0.12
0.1k1

0,R, 10k2
0,R or 10k1

0,R, 0.1k2
0,R 0.01

a Concentration of the target and pulsation of field and temperature
oscillations are fixed atP ) 10-6 M and ω ) 2 s-1 for a reference
couple characterized byk1

0,R ) 106 M-1 s-1, k2
0,R ) 1 s-1, ε1

R ) 8, ε2
R

) 60.
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couples are representative of mismatched (C, Q) pairs. In a
context of sortingC strands containing a complementary
sequence to that ofP, such couples are the most disturbing
species. In addition to (k1

0,R, k2
0,R), we consider four couples

characterized byK0 e K0,R: (10k1
0,R, 10k2

0,R), (k1
0,R, 10k2

0,R),
(k1

0,R/10, k2
0,R), and (k1

0,R/10, k2
0,R/10). In principle, one addition-

ally expects∆ε < ∆εR in the series of these four couples. We
used typical orders of magnitude for pairing between 9 bases-
long single-stranded oligonucleotides22 to calculate the values
of V∆εR/VR∆ε predicted by eq 22 for these 5 cases (Table 2).
These analytical predictions were compared to the results of
numerical solutions of the partial differential equations govern-
ing the evolution of the concentrations. After introduction of
discrete space and time variables, respectively,x/∆x and t/∆t,
where∆x is the length of a spatial cell and∆t, the time step, a
simple finite-difference method of Euler type was used to solve
the equations.4 Some concentration profiles obtained are given
in Figure 3. Solving numerically eqs 2 and 3 with the expression
(6) for rate constants, allows us to check the validity of the
approximations, i.e., the first-order expansion with respect to
the amplitude of temperature oscillationsâ and the elimination
of the transient and constant terms in the expression of the
velocity. It also gives access to the broadening of the concentra-
tion profiles due to diffusion and dispersion. Indeed, eq 25 are
identical to the resonance conditions for maximizing the (CR,
QR) dispersion.4

The mean positions of representative peaks are given in Figure
4. For â ) 10-2 and only after one period of oscillations, the
different peaks travel with a velocity which agrees with the
analytical prediction of eq 22 to within a few percent. For the
parameter values associated with typical 9-bases DNA strands
at a temperature close to 25°C,22 the velocity of the reference
couple (CR, QR) is of the order ofVR ) 0.5 µm s-1 and is at
least 3.6 larger than any other considered couple. Taking into
account that a decrease ofk2

0 by a factor of 10 is the lowest
anticipated limit, the detection of any micromutation or single
nucleotide polymorphism, as well asCR sorting by theP
sequence should be easily achieved.

Figure 5 gives the evolution of the position variance: the
broadening of the peaks associated with the different couples
(C, Q) obeys a diffusion law. For the parameter values of Figure

5, all the species have nearly the same diffusion coefficient close
to DC ) DQ: oriented motion has been achieved in the regime
where apparent dispersion is governed by actual diffusion. As
seen in Figure 3, the fastest couple (CR, QR) keeps a peak as
narrow as the other couples. We solved eqs 2 and 3 for different
parameter values leading to apparent diffusion coefficients, that
varies according to the values of the rate constants. Typical
results are given in Figure 6. The values of the apparent diffusion
coefficients, deduced from the slopes of the lines, agree to within
a few percent with the theoretical predictions

that we obtained in the absence of temperature oscillations.4

Hence the expression of the apparent diffusion coefficient
derived at a constant temperatureT0 can also be used in the
case of a temperature modulation. It is therefore easy to derive
the condition on field amplitude such that the broadening of
the peaks is controlled by actual diffusion. ForDC ) DQ this
condition reduces to

We checked that the small-field condition was obeyed for the
parameters of Figure 5 withω ) 2 s-1, but not for those of
Figure 6 withω ) 2 × 10-3 s-1.

In a purpose of separation or to facilitate a nonambiguous
detection of an oriented motion, we introduce the timeτ that is
necessary for a peak to travel over a distance larger than its

Figure 3. Total concentration profiles of speciesC andQ after 2000
periods of field and temperature oscillations. The results are given by
the numerical integration of eqs 2 and 3 for∆t ) 0.01 s,∆x ) 0.000005
m and the following parameter values:â ) 0.01,DC ) DQ ) 10-10

m2 s-1, aµC ) 1.7× 10-5 m s-1, aµQ ) 0.7× 10-5 m s-1, ω ) 2 s-1,
P ) 10-6 M; the reference couple (CR, QR) (solid line) obeysk1

0,R )
106 M-1 s-1, k2

0,R ) 1 s-1, ε1
R ) 8, ε2

R ) 60; the two other couples
considered are defined byk1° ) 10k1

0,R, k2
0 ) 10k2

0,R (long-dashed
line); k1° ) k1

0,R, k2
0 ) 10k2

0,R (short-dashed line). Initially, a same
amount of the different couples (C, Q) at chemical equilibrium is located
in the middle of the medium.

Figure 4. Time evolution of the mean position〈x〉 of the reference
couple (CR, QR) and 2 other couples for the parameter values of Figure
3.

Figure 5. Same caption as Figure 4 for the variance of the position
〈x2〉 - 〈x〉2.

D ) DC

k2
0

κ1
0 + k2

0
+ DQ

κ1
0

κ1
0 + k2

0
+

(a∆µ)2
κ1

0k2
0

2(κ1
0 + k2

0)[(κ1
0 + k2

0)2 + ω2]
(28)

a∆µ , 4xDCω (29)
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broadening. For the present method,τ obeys

where the diffusion coefficient and the velocity are respectively
given by eqs 28 and 22. Two regimes are observed depending
on the amplitude of the field oscillations. In a regime of weak
field obeying eq 29, the broadening is controlled by intrinsic
diffusion whereas, in a regime of strong field, the width of the
peaks is controlled by the field amplitude. For the reference
couple (CR, QR) with rate constants that obey the conditions
given in eq 23, the characteristic time reads

in a regime of weak field and forDC = DQ. For the set of
parameters displayed in Figures 3-5, τf ≈ 2 h is associated to
a typical migration over 2cm. In a regime of strong field, the
characteristic time obeys

In this regime, note that the choice of a large field amplitude
increases the velocityV but does not decrease the characteristic
time for separation. For the same set of parameters, the lower
limit of τF is now 1 min that corresponds to a 30µm oriented
motion.

6. Conclusion

We introduced a chromatography protocol that exhibits an
unprecedented selectivity. It is based on the oriented molecular
motion that results from the application of two phase-related
symmetrically modulated excitations: a uniform periodic field
with average null value and a modulation of a thermodynamic
parameter such as temperature. Whereas one or two parameters
are generally involved to characterize every mixture component
in current chromatography approaches, the present protocol
relies on four independent parameters to determine the motion
of the mixture components. Peak dispersion is at the largest.
At the same time, the latter dispersion is not accompanied by a
facilitated recovery of a desired species as we observed when
the uniform periodic field was applied only. In the most general

case, it is difficult to singularize a given component by an
extremal behavior. This restriction disappeared when one is
concerned with sorting mixture components with the largest
response to the modulation in the thermodynamic parameter.
Then it becomes even possible to separate mixture components
that share the same rate constants for the discrimination process.
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